3.9.16 \(\int \cot ^{\frac {3}{2}}(c+d x) (a+b \tan (c+d x))^3 \, dx\) [816]

3.9.16.1 Optimal result
3.9.16.2 Mathematica [C] (verified)
3.9.16.3 Rubi [A] (verified)
3.9.16.4 Maple [B] (verified)
3.9.16.5 Fricas [B] (verification not implemented)
3.9.16.6 Sympy [F]
3.9.16.7 Maxima [A] (verification not implemented)
3.9.16.8 Giac [F]
3.9.16.9 Mupad [F(-1)]

3.9.16.1 Optimal result

Integrand size = 23, antiderivative size = 245 \[ \int \cot ^{\frac {3}{2}}(c+d x) (a+b \tan (c+d x))^3 \, dx=-\frac {(a+b) \left (a^2-4 a b+b^2\right ) \arctan \left (1-\sqrt {2} \sqrt {\cot (c+d x)}\right )}{\sqrt {2} d}+\frac {(a+b) \left (a^2-4 a b+b^2\right ) \arctan \left (1+\sqrt {2} \sqrt {\cot (c+d x)}\right )}{\sqrt {2} d}-\frac {2 a \left (a^2+b^2\right ) \sqrt {\cot (c+d x)}}{d}+\frac {2 b^2 (b+a \cot (c+d x))}{d \sqrt {\cot (c+d x)}}-\frac {(a-b) \left (a^2+4 a b+b^2\right ) \log \left (1-\sqrt {2} \sqrt {\cot (c+d x)}+\cot (c+d x)\right )}{2 \sqrt {2} d}+\frac {(a-b) \left (a^2+4 a b+b^2\right ) \log \left (1+\sqrt {2} \sqrt {\cot (c+d x)}+\cot (c+d x)\right )}{2 \sqrt {2} d} \]

output
1/2*(a+b)*(a^2-4*a*b+b^2)*arctan(-1+2^(1/2)*cot(d*x+c)^(1/2))/d*2^(1/2)+1/ 
2*(a+b)*(a^2-4*a*b+b^2)*arctan(1+2^(1/2)*cot(d*x+c)^(1/2))/d*2^(1/2)-1/4*( 
a-b)*(a^2+4*a*b+b^2)*ln(1+cot(d*x+c)-2^(1/2)*cot(d*x+c)^(1/2))/d*2^(1/2)+1 
/4*(a-b)*(a^2+4*a*b+b^2)*ln(1+cot(d*x+c)+2^(1/2)*cot(d*x+c)^(1/2))/d*2^(1/ 
2)+2*b^2*(b+a*cot(d*x+c))/d/cot(d*x+c)^(1/2)-2*a*(a^2+b^2)*cot(d*x+c)^(1/2 
)/d
 
3.9.16.2 Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 3 in optimal.

Time = 3.22 (sec) , antiderivative size = 188, normalized size of antiderivative = 0.77 \[ \int \cot ^{\frac {3}{2}}(c+d x) (a+b \tan (c+d x))^3 \, dx=-\frac {-24 a^2 b+8 a^3 \cot (c+d x)-8 b \left (-3 a^2+b^2\right ) \operatorname {Hypergeometric2F1}\left (-\frac {1}{4},1,\frac {3}{4},-\cot ^2(c+d x)\right )+\sqrt {2} a \left (a^2-3 b^2\right ) \sqrt {\cot (c+d x)} \left (2 \arctan \left (1-\sqrt {2} \sqrt {\cot (c+d x)}\right )-2 \arctan \left (1+\sqrt {2} \sqrt {\cot (c+d x)}\right )+\log \left (1-\sqrt {2} \sqrt {\cot (c+d x)}+\cot (c+d x)\right )-\log \left (1+\sqrt {2} \sqrt {\cot (c+d x)}+\cot (c+d x)\right )\right )}{4 d \sqrt {\cot (c+d x)}} \]

input
Integrate[Cot[c + d*x]^(3/2)*(a + b*Tan[c + d*x])^3,x]
 
output
-1/4*(-24*a^2*b + 8*a^3*Cot[c + d*x] - 8*b*(-3*a^2 + b^2)*Hypergeometric2F 
1[-1/4, 1, 3/4, -Cot[c + d*x]^2] + Sqrt[2]*a*(a^2 - 3*b^2)*Sqrt[Cot[c + d* 
x]]*(2*ArcTan[1 - Sqrt[2]*Sqrt[Cot[c + d*x]]] - 2*ArcTan[1 + Sqrt[2]*Sqrt[ 
Cot[c + d*x]]] + Log[1 - Sqrt[2]*Sqrt[Cot[c + d*x]] + Cot[c + d*x]] - Log[ 
1 + Sqrt[2]*Sqrt[Cot[c + d*x]] + Cot[c + d*x]]))/(d*Sqrt[Cot[c + d*x]])
 
3.9.16.3 Rubi [A] (verified)

Time = 0.82 (sec) , antiderivative size = 219, normalized size of antiderivative = 0.89, number of steps used = 18, number of rules used = 17, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.739, Rules used = {3042, 4156, 3042, 4048, 27, 3042, 4113, 3042, 4017, 1482, 1476, 1082, 217, 1479, 25, 27, 1103}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \cot ^{\frac {3}{2}}(c+d x) (a+b \tan (c+d x))^3 \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \cot (c+d x)^{3/2} (a+b \tan (c+d x))^3dx\)

\(\Big \downarrow \) 4156

\(\displaystyle \int \frac {(a \cot (c+d x)+b)^3}{\cot ^{\frac {3}{2}}(c+d x)}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\left (b-a \tan \left (c+d x+\frac {\pi }{2}\right )\right )^3}{\left (-\tan \left (c+d x+\frac {\pi }{2}\right )\right )^{3/2}}dx\)

\(\Big \downarrow \) 4048

\(\displaystyle \frac {2 b^2 (a \cot (c+d x)+b)}{d \sqrt {\cot (c+d x)}}-2 \int -\frac {4 a b^2+\left (3 a^2-b^2\right ) \cot (c+d x) b+a \left (a^2+b^2\right ) \cot ^2(c+d x)}{2 \sqrt {\cot (c+d x)}}dx\)

\(\Big \downarrow \) 27

\(\displaystyle \int \frac {4 a b^2+\left (3 a^2-b^2\right ) \cot (c+d x) b+a \left (a^2+b^2\right ) \cot ^2(c+d x)}{\sqrt {\cot (c+d x)}}dx+\frac {2 b^2 (a \cot (c+d x)+b)}{d \sqrt {\cot (c+d x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {4 a b^2-\left (3 a^2-b^2\right ) \tan \left (c+d x+\frac {\pi }{2}\right ) b+a \left (a^2+b^2\right ) \tan \left (c+d x+\frac {\pi }{2}\right )^2}{\sqrt {-\tan \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {2 b^2 (a \cot (c+d x)+b)}{d \sqrt {\cot (c+d x)}}\)

\(\Big \downarrow \) 4113

\(\displaystyle \int \frac {b \left (3 a^2-b^2\right ) \cot (c+d x)-a \left (a^2-3 b^2\right )}{\sqrt {\cot (c+d x)}}dx-\frac {2 a \left (a^2+b^2\right ) \sqrt {\cot (c+d x)}}{d}+\frac {2 b^2 (a \cot (c+d x)+b)}{d \sqrt {\cot (c+d x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {-a \left (a^2-3 b^2\right )-b \left (3 a^2-b^2\right ) \tan \left (c+d x+\frac {\pi }{2}\right )}{\sqrt {-\tan \left (c+d x+\frac {\pi }{2}\right )}}dx-\frac {2 a \left (a^2+b^2\right ) \sqrt {\cot (c+d x)}}{d}+\frac {2 b^2 (a \cot (c+d x)+b)}{d \sqrt {\cot (c+d x)}}\)

\(\Big \downarrow \) 4017

\(\displaystyle \frac {2 \int \frac {a \left (a^2-3 b^2\right )-b \left (3 a^2-b^2\right ) \cot (c+d x)}{\cot ^2(c+d x)+1}d\sqrt {\cot (c+d x)}}{d}-\frac {2 a \left (a^2+b^2\right ) \sqrt {\cot (c+d x)}}{d}+\frac {2 b^2 (a \cot (c+d x)+b)}{d \sqrt {\cot (c+d x)}}\)

\(\Big \downarrow \) 1482

\(\displaystyle \frac {2 \left (\frac {1}{2} (a-b) \left (a^2+4 a b+b^2\right ) \int \frac {1-\cot (c+d x)}{\cot ^2(c+d x)+1}d\sqrt {\cot (c+d x)}+\frac {1}{2} (a+b) \left (a^2-4 a b+b^2\right ) \int \frac {\cot (c+d x)+1}{\cot ^2(c+d x)+1}d\sqrt {\cot (c+d x)}\right )}{d}-\frac {2 a \left (a^2+b^2\right ) \sqrt {\cot (c+d x)}}{d}+\frac {2 b^2 (a \cot (c+d x)+b)}{d \sqrt {\cot (c+d x)}}\)

\(\Big \downarrow \) 1476

\(\displaystyle \frac {2 \left (\frac {1}{2} (a-b) \left (a^2+4 a b+b^2\right ) \int \frac {1-\cot (c+d x)}{\cot ^2(c+d x)+1}d\sqrt {\cot (c+d x)}+\frac {1}{2} (a+b) \left (a^2-4 a b+b^2\right ) \left (\frac {1}{2} \int \frac {1}{\cot (c+d x)-\sqrt {2} \sqrt {\cot (c+d x)}+1}d\sqrt {\cot (c+d x)}+\frac {1}{2} \int \frac {1}{\cot (c+d x)+\sqrt {2} \sqrt {\cot (c+d x)}+1}d\sqrt {\cot (c+d x)}\right )\right )}{d}-\frac {2 a \left (a^2+b^2\right ) \sqrt {\cot (c+d x)}}{d}+\frac {2 b^2 (a \cot (c+d x)+b)}{d \sqrt {\cot (c+d x)}}\)

\(\Big \downarrow \) 1082

\(\displaystyle \frac {2 \left (\frac {1}{2} (a-b) \left (a^2+4 a b+b^2\right ) \int \frac {1-\cot (c+d x)}{\cot ^2(c+d x)+1}d\sqrt {\cot (c+d x)}+\frac {1}{2} (a+b) \left (a^2-4 a b+b^2\right ) \left (\frac {\int \frac {1}{-\cot (c+d x)-1}d\left (1-\sqrt {2} \sqrt {\cot (c+d x)}\right )}{\sqrt {2}}-\frac {\int \frac {1}{-\cot (c+d x)-1}d\left (\sqrt {2} \sqrt {\cot (c+d x)}+1\right )}{\sqrt {2}}\right )\right )}{d}-\frac {2 a \left (a^2+b^2\right ) \sqrt {\cot (c+d x)}}{d}+\frac {2 b^2 (a \cot (c+d x)+b)}{d \sqrt {\cot (c+d x)}}\)

\(\Big \downarrow \) 217

\(\displaystyle \frac {2 \left (\frac {1}{2} (a-b) \left (a^2+4 a b+b^2\right ) \int \frac {1-\cot (c+d x)}{\cot ^2(c+d x)+1}d\sqrt {\cot (c+d x)}+\frac {1}{2} (a+b) \left (a^2-4 a b+b^2\right ) \left (\frac {\arctan \left (\sqrt {2} \sqrt {\cot (c+d x)}+1\right )}{\sqrt {2}}-\frac {\arctan \left (1-\sqrt {2} \sqrt {\cot (c+d x)}\right )}{\sqrt {2}}\right )\right )}{d}-\frac {2 a \left (a^2+b^2\right ) \sqrt {\cot (c+d x)}}{d}+\frac {2 b^2 (a \cot (c+d x)+b)}{d \sqrt {\cot (c+d x)}}\)

\(\Big \downarrow \) 1479

\(\displaystyle \frac {2 \left (\frac {1}{2} (a-b) \left (a^2+4 a b+b^2\right ) \left (-\frac {\int -\frac {\sqrt {2}-2 \sqrt {\cot (c+d x)}}{\cot (c+d x)-\sqrt {2} \sqrt {\cot (c+d x)}+1}d\sqrt {\cot (c+d x)}}{2 \sqrt {2}}-\frac {\int -\frac {\sqrt {2} \left (\sqrt {2} \sqrt {\cot (c+d x)}+1\right )}{\cot (c+d x)+\sqrt {2} \sqrt {\cot (c+d x)}+1}d\sqrt {\cot (c+d x)}}{2 \sqrt {2}}\right )+\frac {1}{2} (a+b) \left (a^2-4 a b+b^2\right ) \left (\frac {\arctan \left (\sqrt {2} \sqrt {\cot (c+d x)}+1\right )}{\sqrt {2}}-\frac {\arctan \left (1-\sqrt {2} \sqrt {\cot (c+d x)}\right )}{\sqrt {2}}\right )\right )}{d}-\frac {2 a \left (a^2+b^2\right ) \sqrt {\cot (c+d x)}}{d}+\frac {2 b^2 (a \cot (c+d x)+b)}{d \sqrt {\cot (c+d x)}}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {2 \left (\frac {1}{2} (a-b) \left (a^2+4 a b+b^2\right ) \left (\frac {\int \frac {\sqrt {2}-2 \sqrt {\cot (c+d x)}}{\cot (c+d x)-\sqrt {2} \sqrt {\cot (c+d x)}+1}d\sqrt {\cot (c+d x)}}{2 \sqrt {2}}+\frac {\int \frac {\sqrt {2} \left (\sqrt {2} \sqrt {\cot (c+d x)}+1\right )}{\cot (c+d x)+\sqrt {2} \sqrt {\cot (c+d x)}+1}d\sqrt {\cot (c+d x)}}{2 \sqrt {2}}\right )+\frac {1}{2} (a+b) \left (a^2-4 a b+b^2\right ) \left (\frac {\arctan \left (\sqrt {2} \sqrt {\cot (c+d x)}+1\right )}{\sqrt {2}}-\frac {\arctan \left (1-\sqrt {2} \sqrt {\cot (c+d x)}\right )}{\sqrt {2}}\right )\right )}{d}-\frac {2 a \left (a^2+b^2\right ) \sqrt {\cot (c+d x)}}{d}+\frac {2 b^2 (a \cot (c+d x)+b)}{d \sqrt {\cot (c+d x)}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {2 \left (\frac {1}{2} (a-b) \left (a^2+4 a b+b^2\right ) \left (\frac {\int \frac {\sqrt {2}-2 \sqrt {\cot (c+d x)}}{\cot (c+d x)-\sqrt {2} \sqrt {\cot (c+d x)}+1}d\sqrt {\cot (c+d x)}}{2 \sqrt {2}}+\frac {1}{2} \int \frac {\sqrt {2} \sqrt {\cot (c+d x)}+1}{\cot (c+d x)+\sqrt {2} \sqrt {\cot (c+d x)}+1}d\sqrt {\cot (c+d x)}\right )+\frac {1}{2} (a+b) \left (a^2-4 a b+b^2\right ) \left (\frac {\arctan \left (\sqrt {2} \sqrt {\cot (c+d x)}+1\right )}{\sqrt {2}}-\frac {\arctan \left (1-\sqrt {2} \sqrt {\cot (c+d x)}\right )}{\sqrt {2}}\right )\right )}{d}-\frac {2 a \left (a^2+b^2\right ) \sqrt {\cot (c+d x)}}{d}+\frac {2 b^2 (a \cot (c+d x)+b)}{d \sqrt {\cot (c+d x)}}\)

\(\Big \downarrow \) 1103

\(\displaystyle \frac {2 \left (\frac {1}{2} (a+b) \left (a^2-4 a b+b^2\right ) \left (\frac {\arctan \left (\sqrt {2} \sqrt {\cot (c+d x)}+1\right )}{\sqrt {2}}-\frac {\arctan \left (1-\sqrt {2} \sqrt {\cot (c+d x)}\right )}{\sqrt {2}}\right )+\frac {1}{2} (a-b) \left (a^2+4 a b+b^2\right ) \left (\frac {\log \left (\cot (c+d x)+\sqrt {2} \sqrt {\cot (c+d x)}+1\right )}{2 \sqrt {2}}-\frac {\log \left (\cot (c+d x)-\sqrt {2} \sqrt {\cot (c+d x)}+1\right )}{2 \sqrt {2}}\right )\right )}{d}-\frac {2 a \left (a^2+b^2\right ) \sqrt {\cot (c+d x)}}{d}+\frac {2 b^2 (a \cot (c+d x)+b)}{d \sqrt {\cot (c+d x)}}\)

input
Int[Cot[c + d*x]^(3/2)*(a + b*Tan[c + d*x])^3,x]
 
output
(-2*a*(a^2 + b^2)*Sqrt[Cot[c + d*x]])/d + (2*b^2*(b + a*Cot[c + d*x]))/(d* 
Sqrt[Cot[c + d*x]]) + (2*(((a + b)*(a^2 - 4*a*b + b^2)*(-(ArcTan[1 - Sqrt[ 
2]*Sqrt[Cot[c + d*x]]]/Sqrt[2]) + ArcTan[1 + Sqrt[2]*Sqrt[Cot[c + d*x]]]/S 
qrt[2]))/2 + ((a - b)*(a^2 + 4*a*b + b^2)*(-1/2*Log[1 - Sqrt[2]*Sqrt[Cot[c 
 + d*x]] + Cot[c + d*x]]/Sqrt[2] + Log[1 + Sqrt[2]*Sqrt[Cot[c + d*x]] + Co 
t[c + d*x]]/(2*Sqrt[2])))/2))/d
 

3.9.16.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 217
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^( 
-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] & 
& (LtQ[a, 0] || LtQ[b, 0])
 

rule 1082
Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*S 
implify[a*(c/b^2)]}, Simp[-2/b   Subst[Int[1/(q - x^2), x], x, 1 + 2*c*(x/b 
)], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /; Fre 
eQ[{a, b, c}, x]
 

rule 1103
Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> S 
imp[d*(Log[RemoveContent[a + b*x + c*x^2, x]]/b), x] /; FreeQ[{a, b, c, d, 
e}, x] && EqQ[2*c*d - b*e, 0]
 

rule 1476
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
2*(d/e), 2]}, Simp[e/(2*c)   Int[1/Simp[d/e + q*x + x^2, x], x], x] + Simp[ 
e/(2*c)   Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e}, x] 
 && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]
 

rule 1479
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
-2*(d/e), 2]}, Simp[e/(2*c*q)   Int[(q - 2*x)/Simp[d/e + q*x - x^2, x], x], 
 x] + Simp[e/(2*c*q)   Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /; F 
reeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]
 

rule 1482
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
a*c, 2]}, Simp[(d*q + a*e)/(2*a*c)   Int[(q + c*x^2)/(a + c*x^4), x], x] + 
Simp[(d*q - a*e)/(2*a*c)   Int[(q - c*x^2)/(a + c*x^4), x], x]] /; FreeQ[{a 
, c, d, e}, x] && NeQ[c*d^2 + a*e^2, 0] && NeQ[c*d^2 - a*e^2, 0] && NegQ[(- 
a)*c]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4017
Int[((c_) + (d_.)*tan[(e_.) + (f_.)*(x_)])/Sqrt[(b_.)*tan[(e_.) + (f_.)*(x_ 
)]], x_Symbol] :> Simp[2/f   Subst[Int[(b*c + d*x^2)/(b^2 + x^4), x], x, Sq 
rt[b*Tan[e + f*x]]], x] /; FreeQ[{b, c, d, e, f}, x] && NeQ[c^2 - d^2, 0] & 
& NeQ[c^2 + d^2, 0]
 

rule 4048
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + 
 (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(b*c - a*d)^2*(a + b*Tan[e + f*x])^(m 
 - 2)*((c + d*Tan[e + f*x])^(n + 1)/(d*f*(n + 1)*(c^2 + d^2))), x] - Simp[1 
/(d*(n + 1)*(c^2 + d^2))   Int[(a + b*Tan[e + f*x])^(m - 3)*(c + d*Tan[e + 
f*x])^(n + 1)*Simp[a^2*d*(b*d*(m - 2) - a*c*(n + 1)) + b*(b*c - 2*a*d)*(b*c 
*(m - 2) + a*d*(n + 1)) - d*(n + 1)*(3*a^2*b*c - b^3*c - a^3*d + 3*a*b^2*d) 
*Tan[e + f*x] - b*(a*d*(2*b*c - a*d)*(m + n - 1) - b^2*(c^2*(m - 2) - d^2*( 
n + 1)))*Tan[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[ 
b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && GtQ[m, 2] && LtQ 
[n, -1] && IntegerQ[2*m]
 

rule 4113
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*tan[(e_.) 
+ (f_.)*(x_)] + (C_.)*tan[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[C*((a + 
 b*Tan[e + f*x])^(m + 1)/(b*f*(m + 1))), x] + Int[(a + b*Tan[e + f*x])^m*Si 
mp[A - C + B*Tan[e + f*x], x], x] /; FreeQ[{a, b, e, f, A, B, C, m}, x] && 
NeQ[A*b^2 - a*b*B + a^2*C, 0] &&  !LeQ[m, -1]
 

rule 4156
Int[(cot[(e_.) + (f_.)*(x_)]*(d_.))^(m_)*((a_) + (b_.)*tan[(e_.) + (f_.)*(x 
_)]^(n_.))^(p_.), x_Symbol] :> Simp[d^(n*p)   Int[(d*Cot[e + f*x])^(m - n*p 
)*(b + a*Cot[e + f*x]^n)^p, x], x] /; FreeQ[{a, b, d, e, f, m, n, p}, x] && 
  !IntegerQ[m] && IntegersQ[n, p]
 
3.9.16.4 Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(544\) vs. \(2(213)=426\).

Time = 1.46 (sec) , antiderivative size = 545, normalized size of antiderivative = 2.22

method result size
derivativedivides \(\frac {\left (\frac {1}{\tan \left (d x +c \right )}\right )^{\frac {3}{2}} \tan \left (d x +c \right ) \left (3 \ln \left (-\frac {1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )+\tan \left (d x +c \right )}{\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )-\tan \left (d x +c \right )-1}\right ) \sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right ) a^{2} b -\ln \left (-\frac {1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )+\tan \left (d x +c \right )}{\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )-\tan \left (d x +c \right )-1}\right ) \sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right ) b^{3}-2 \arctan \left (1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )\right ) \sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right ) a^{3}+6 \arctan \left (1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )\right ) \sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right ) a^{2} b +6 \arctan \left (1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )\right ) \sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right ) a \,b^{2}-2 \arctan \left (1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )\right ) \sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right ) b^{3}-2 \arctan \left (-1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )\right ) \sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right ) a^{3}+6 \arctan \left (-1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )\right ) \sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right ) a^{2} b +6 \arctan \left (-1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )\right ) \sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right ) a \,b^{2}-2 \arctan \left (-1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )\right ) \sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right ) b^{3}-\ln \left (-\frac {\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )-\tan \left (d x +c \right )-1}{1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )+\tan \left (d x +c \right )}\right ) \sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right ) a^{3}+3 \ln \left (-\frac {\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )-\tan \left (d x +c \right )-1}{1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )+\tan \left (d x +c \right )}\right ) \sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right ) a \,b^{2}+8 b^{3} \tan \left (d x +c \right )-8 a^{3}\right )}{4 d}\) \(545\)
default \(\frac {\left (\frac {1}{\tan \left (d x +c \right )}\right )^{\frac {3}{2}} \tan \left (d x +c \right ) \left (3 \ln \left (-\frac {1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )+\tan \left (d x +c \right )}{\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )-\tan \left (d x +c \right )-1}\right ) \sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right ) a^{2} b -\ln \left (-\frac {1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )+\tan \left (d x +c \right )}{\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )-\tan \left (d x +c \right )-1}\right ) \sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right ) b^{3}-2 \arctan \left (1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )\right ) \sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right ) a^{3}+6 \arctan \left (1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )\right ) \sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right ) a^{2} b +6 \arctan \left (1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )\right ) \sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right ) a \,b^{2}-2 \arctan \left (1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )\right ) \sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right ) b^{3}-2 \arctan \left (-1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )\right ) \sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right ) a^{3}+6 \arctan \left (-1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )\right ) \sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right ) a^{2} b +6 \arctan \left (-1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )\right ) \sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right ) a \,b^{2}-2 \arctan \left (-1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )\right ) \sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right ) b^{3}-\ln \left (-\frac {\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )-\tan \left (d x +c \right )-1}{1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )+\tan \left (d x +c \right )}\right ) \sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right ) a^{3}+3 \ln \left (-\frac {\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )-\tan \left (d x +c \right )-1}{1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )+\tan \left (d x +c \right )}\right ) \sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right ) a \,b^{2}+8 b^{3} \tan \left (d x +c \right )-8 a^{3}\right )}{4 d}\) \(545\)

input
int(cot(d*x+c)^(3/2)*(a+b*tan(d*x+c))^3,x,method=_RETURNVERBOSE)
 
output
1/4/d*(1/tan(d*x+c))^(3/2)*tan(d*x+c)*(3*ln(-(1+2^(1/2)*tan(d*x+c)^(1/2)+t 
an(d*x+c))/(2^(1/2)*tan(d*x+c)^(1/2)-tan(d*x+c)-1))*2^(1/2)*tan(d*x+c)^(1/ 
2)*a^2*b-ln(-(1+2^(1/2)*tan(d*x+c)^(1/2)+tan(d*x+c))/(2^(1/2)*tan(d*x+c)^( 
1/2)-tan(d*x+c)-1))*2^(1/2)*tan(d*x+c)^(1/2)*b^3-2*arctan(1+2^(1/2)*tan(d* 
x+c)^(1/2))*2^(1/2)*tan(d*x+c)^(1/2)*a^3+6*arctan(1+2^(1/2)*tan(d*x+c)^(1/ 
2))*2^(1/2)*tan(d*x+c)^(1/2)*a^2*b+6*arctan(1+2^(1/2)*tan(d*x+c)^(1/2))*2^ 
(1/2)*tan(d*x+c)^(1/2)*a*b^2-2*arctan(1+2^(1/2)*tan(d*x+c)^(1/2))*2^(1/2)* 
tan(d*x+c)^(1/2)*b^3-2*arctan(-1+2^(1/2)*tan(d*x+c)^(1/2))*2^(1/2)*tan(d*x 
+c)^(1/2)*a^3+6*arctan(-1+2^(1/2)*tan(d*x+c)^(1/2))*2^(1/2)*tan(d*x+c)^(1/ 
2)*a^2*b+6*arctan(-1+2^(1/2)*tan(d*x+c)^(1/2))*2^(1/2)*tan(d*x+c)^(1/2)*a* 
b^2-2*arctan(-1+2^(1/2)*tan(d*x+c)^(1/2))*2^(1/2)*tan(d*x+c)^(1/2)*b^3-ln( 
-(2^(1/2)*tan(d*x+c)^(1/2)-tan(d*x+c)-1)/(1+2^(1/2)*tan(d*x+c)^(1/2)+tan(d 
*x+c)))*2^(1/2)*tan(d*x+c)^(1/2)*a^3+3*ln(-(2^(1/2)*tan(d*x+c)^(1/2)-tan(d 
*x+c)-1)/(1+2^(1/2)*tan(d*x+c)^(1/2)+tan(d*x+c)))*2^(1/2)*tan(d*x+c)^(1/2) 
*a*b^2+8*b^3*tan(d*x+c)-8*a^3)
 
3.9.16.5 Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 1366 vs. \(2 (213) = 426\).

Time = 0.35 (sec) , antiderivative size = 1366, normalized size of antiderivative = 5.58 \[ \int \cot ^{\frac {3}{2}}(c+d x) (a+b \tan (c+d x))^3 \, dx=\text {Too large to display} \]

input
integrate(cot(d*x+c)^(3/2)*(a+b*tan(d*x+c))^3,x, algorithm="fricas")
 
output
1/2*(d*sqrt((6*a^5*b - 20*a^3*b^3 + 6*a*b^5 + d^2*sqrt(-(a^12 - 30*a^10*b^ 
2 + 255*a^8*b^4 - 452*a^6*b^6 + 255*a^4*b^8 - 30*a^2*b^10 + b^12)/d^4))/d^ 
2)*log(((a^3 - 3*a*b^2)*d^3*sqrt(-(a^12 - 30*a^10*b^2 + 255*a^8*b^4 - 452* 
a^6*b^6 + 255*a^4*b^8 - 30*a^2*b^10 + b^12)/d^4) - (3*a^8*b - 46*a^6*b^3 + 
 60*a^4*b^5 - 18*a^2*b^7 + b^9)*d)*sqrt((6*a^5*b - 20*a^3*b^3 + 6*a*b^5 + 
d^2*sqrt(-(a^12 - 30*a^10*b^2 + 255*a^8*b^4 - 452*a^6*b^6 + 255*a^4*b^8 - 
30*a^2*b^10 + b^12)/d^4))/d^2) - (a^12 - 12*a^10*b^2 - 27*a^8*b^4 + 27*a^4 
*b^8 + 12*a^2*b^10 - b^12)*sqrt(tan(d*x + c))) - d*sqrt((6*a^5*b - 20*a^3* 
b^3 + 6*a*b^5 + d^2*sqrt(-(a^12 - 30*a^10*b^2 + 255*a^8*b^4 - 452*a^6*b^6 
+ 255*a^4*b^8 - 30*a^2*b^10 + b^12)/d^4))/d^2)*log(-((a^3 - 3*a*b^2)*d^3*s 
qrt(-(a^12 - 30*a^10*b^2 + 255*a^8*b^4 - 452*a^6*b^6 + 255*a^4*b^8 - 30*a^ 
2*b^10 + b^12)/d^4) - (3*a^8*b - 46*a^6*b^3 + 60*a^4*b^5 - 18*a^2*b^7 + b^ 
9)*d)*sqrt((6*a^5*b - 20*a^3*b^3 + 6*a*b^5 + d^2*sqrt(-(a^12 - 30*a^10*b^2 
 + 255*a^8*b^4 - 452*a^6*b^6 + 255*a^4*b^8 - 30*a^2*b^10 + b^12)/d^4))/d^2 
) - (a^12 - 12*a^10*b^2 - 27*a^8*b^4 + 27*a^4*b^8 + 12*a^2*b^10 - b^12)*sq 
rt(tan(d*x + c))) - d*sqrt((6*a^5*b - 20*a^3*b^3 + 6*a*b^5 - d^2*sqrt(-(a^ 
12 - 30*a^10*b^2 + 255*a^8*b^4 - 452*a^6*b^6 + 255*a^4*b^8 - 30*a^2*b^10 + 
 b^12)/d^4))/d^2)*log(((a^3 - 3*a*b^2)*d^3*sqrt(-(a^12 - 30*a^10*b^2 + 255 
*a^8*b^4 - 452*a^6*b^6 + 255*a^4*b^8 - 30*a^2*b^10 + b^12)/d^4) + (3*a^8*b 
 - 46*a^6*b^3 + 60*a^4*b^5 - 18*a^2*b^7 + b^9)*d)*sqrt((6*a^5*b - 20*a^...
 
3.9.16.6 Sympy [F]

\[ \int \cot ^{\frac {3}{2}}(c+d x) (a+b \tan (c+d x))^3 \, dx=\int \left (a + b \tan {\left (c + d x \right )}\right )^{3} \cot ^{\frac {3}{2}}{\left (c + d x \right )}\, dx \]

input
integrate(cot(d*x+c)**(3/2)*(a+b*tan(d*x+c))**3,x)
 
output
Integral((a + b*tan(c + d*x))**3*cot(c + d*x)**(3/2), x)
 
3.9.16.7 Maxima [A] (verification not implemented)

Time = 0.29 (sec) , antiderivative size = 218, normalized size of antiderivative = 0.89 \[ \int \cot ^{\frac {3}{2}}(c+d x) (a+b \tan (c+d x))^3 \, dx=\frac {8 \, b^{3} \sqrt {\tan \left (d x + c\right )} + 2 \, \sqrt {2} {\left (a^{3} - 3 \, a^{2} b - 3 \, a b^{2} + b^{3}\right )} \arctan \left (\frac {1}{2} \, \sqrt {2} {\left (\sqrt {2} + \frac {2}{\sqrt {\tan \left (d x + c\right )}}\right )}\right ) + 2 \, \sqrt {2} {\left (a^{3} - 3 \, a^{2} b - 3 \, a b^{2} + b^{3}\right )} \arctan \left (-\frac {1}{2} \, \sqrt {2} {\left (\sqrt {2} - \frac {2}{\sqrt {\tan \left (d x + c\right )}}\right )}\right ) + \sqrt {2} {\left (a^{3} + 3 \, a^{2} b - 3 \, a b^{2} - b^{3}\right )} \log \left (\frac {\sqrt {2}}{\sqrt {\tan \left (d x + c\right )}} + \frac {1}{\tan \left (d x + c\right )} + 1\right ) - \sqrt {2} {\left (a^{3} + 3 \, a^{2} b - 3 \, a b^{2} - b^{3}\right )} \log \left (-\frac {\sqrt {2}}{\sqrt {\tan \left (d x + c\right )}} + \frac {1}{\tan \left (d x + c\right )} + 1\right ) - \frac {8 \, a^{3}}{\sqrt {\tan \left (d x + c\right )}}}{4 \, d} \]

input
integrate(cot(d*x+c)^(3/2)*(a+b*tan(d*x+c))^3,x, algorithm="maxima")
 
output
1/4*(8*b^3*sqrt(tan(d*x + c)) + 2*sqrt(2)*(a^3 - 3*a^2*b - 3*a*b^2 + b^3)* 
arctan(1/2*sqrt(2)*(sqrt(2) + 2/sqrt(tan(d*x + c)))) + 2*sqrt(2)*(a^3 - 3* 
a^2*b - 3*a*b^2 + b^3)*arctan(-1/2*sqrt(2)*(sqrt(2) - 2/sqrt(tan(d*x + c)) 
)) + sqrt(2)*(a^3 + 3*a^2*b - 3*a*b^2 - b^3)*log(sqrt(2)/sqrt(tan(d*x + c) 
) + 1/tan(d*x + c) + 1) - sqrt(2)*(a^3 + 3*a^2*b - 3*a*b^2 - b^3)*log(-sqr 
t(2)/sqrt(tan(d*x + c)) + 1/tan(d*x + c) + 1) - 8*a^3/sqrt(tan(d*x + c)))/ 
d
 
3.9.16.8 Giac [F]

\[ \int \cot ^{\frac {3}{2}}(c+d x) (a+b \tan (c+d x))^3 \, dx=\int { {\left (b \tan \left (d x + c\right ) + a\right )}^{3} \cot \left (d x + c\right )^{\frac {3}{2}} \,d x } \]

input
integrate(cot(d*x+c)^(3/2)*(a+b*tan(d*x+c))^3,x, algorithm="giac")
 
output
integrate((b*tan(d*x + c) + a)^3*cot(d*x + c)^(3/2), x)
 
3.9.16.9 Mupad [F(-1)]

Timed out. \[ \int \cot ^{\frac {3}{2}}(c+d x) (a+b \tan (c+d x))^3 \, dx=\int {\mathrm {cot}\left (c+d\,x\right )}^{3/2}\,{\left (a+b\,\mathrm {tan}\left (c+d\,x\right )\right )}^3 \,d x \]

input
int(cot(c + d*x)^(3/2)*(a + b*tan(c + d*x))^3,x)
 
output
int(cot(c + d*x)^(3/2)*(a + b*tan(c + d*x))^3, x)